Quantum Fourier transforms for extracting hidden linear structures in finite fields ∗
نویسندگان
چکیده
We propose a definition for quantum Fourier transforms in settings where the algebraic structure is that of a finite field, and show that they can be performed efficiently by a quantum computer. Using these finite field quantum Fourier transforms, we obtain the strongest separation between quantum and classical query complexity known to date—specifically, we define a problem that requires Ω(2) queries in the classical (bounded error) case, but can be solved exactly with a single query in the quantum case using a polynomial number (in n) of auxiliary operations. Finally, we consider quantum Fourier transforms over arbitrary finite rings, and give efficient quantum circuits for implementing quantum Fourier transforms for the particular case of rings of matrices over finite fields.
منابع مشابه
Classical Wavelet Transforms over Finite Fields
This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...
متن کاملQIP Note: On the Quantum Fourier Transform and Applications
This note introduces Fourier transforms over finite Abelian groups, and shows how this can be used to find the period of any efficiently computable periodic function. This in particular implies an efficient quantum algorithm for factoring. In the appendix we show how this generalizes to solving the hidden subgroup problem in any Abelian group. Efficient quantum algorithms for discrete log (and ...
متن کامل1 Sharp quantum vs . classical query complexity separations ∗
We obtain the strongest separation between quantum and classical query complexity known to date—specifically, we define a black-box problem that requires exponentially many queries in the classical bounded-error case, but can be solved exactly in the quantum case with a single query (and a polynomial number of auxiliary operations). The problem is simple to define and the quantum algorithm solv...
متن کاملA Survey of Finite Algebraic Geometrical Structures Underlying Mutually Unbiased Quantum Measurements
The basic methods of constructing the sets of mutually unbiased bases in the Hilbert space of an arbitrary finite dimension are reviewed and an emerging link between them is outlined. It is shown that these methods employ a wide range of important mathematical concepts like, e.g., Fourier transforms, Galois fields and rings, finite and related projective geometries, and entanglement, to mention...
متن کاملEfficient classical simulations of quantum fourier transforms and normalizer circuits over Abelian groups
The quantum Fourier transform (QFT) is an important ingredient in various quantum algorithms which achieve superpolynomial speed-ups over classical computers. In this paper we study under which conditions the QFT can be simulated efficiently classically. We introduce a class of quantum circuits, called normalizer circuits: a normalizer circuit over a finite Abelian group is any quantum circuit ...
متن کامل